Compressed length is already known to be a powerful metric for classification tasks, but requires polynomial time to do the classification. As much as I hate to admit it, you’re better off using a neural network because they work in linear time, or figuring out how to apply the kernel trick to the metric outlined in this paper.
a formal paper on using compression length as a measure of similarity: https://arxiv.org/pdf/cs/0111054
a blog post on this topic, applied to image classification:
Yeah. That’s what an MP4 does, but I was just saying that first you have to figure out which images are “close enough” to encode this way.