• boonhet@lemm.ee
    link
    fedilink
    English
    arrow-up
    0
    ·
    edit-2
    14 days ago

    ARM and RISC-V are entirely different in that neither one is based on the other, but what they have in common is that they’re both RISC (Reduced Instruction Set Computing) architectures. RISC is what makes ARM CPUs (in your phone, etc) so efficient and hopefully RISC-V will get there too.

    x86 by comparison is Complex Instruction Set Computing, which allows for more performance in some cases, but isn’t as efficient.

    • Echo Dot@feddit.uk
      link
      fedilink
      English
      arrow-up
      0
      ·
      14 days ago

      So is Reduced Instruction Set like in the old assembly days where you couldn’t do multiplication, as there wasn’t a command for it, so you had to do multiple loops of addition?

    • __dev@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      14 days ago

      The original debate from the 80s that defined what RISC and CISC mean has already been settled and neither of those categories really apply anymore. Today all high performance CPUs are superscalar, use microcode, reorder instructions, have variable width instructions, vector instructions, etc. These are exactly the bits of complexity RISC was supposed to avoid in order to achieve higher clock speeds and therefore better performance. The microcode used in modern CPUs is very RISC like, and the instruction sets of ARM64/RISC-V and their extensions would have likely been called CISC in the 80s. All that to say the whole RISC vs CISC thing doesn’t really apply anymore and neither does it explain any differences between x86 and ARM. There are differences and they do matter, but by an large it’s not due to RISC vs CISC.

      As for an example: if we compare the M1 and the 7840u (similar CPUs on a similar process node, one arm64 the other AMD64), the 7840u beats the M1 in performance per watt and outright performance. See https://www.cpu-monkey.com/en/compare_cpu-amd_ryzen_7_7840u-vs-apple_m1. Though the M1 has substantially better battery life than any 7840u laptop, which very clearly has nothing to do with performance per watt but rather design elements adjacent to the CPU.

      In conclusion the major benefit of ARM and RISC-V really has very little to do with the ISA itself, but their more open nature allows manufacturers to build products that AMD and Intel can’t or don’t. CISC-V would be just as exciting.

      • pantyhosewimp@lemmynsfw.com
        link
        fedilink
        English
        arrow-up
        0
        ·
        edit-2
        14 days ago

        Thank you so much for this information.

        If you still have commenting motivation, what are the top 5 differences between x86 and ARM?

        Up until your post I had thought it exactly was the size of the instruction set with x86 having lots of very specific multi-step-in-a-single instruction as well as crufty instruction for backwards compatibility (like MPSADBW).

        • __dev@lemmy.world
          link
          fedilink
          English
          arrow-up
          0
          ·
          13 days ago

          I’m more familiar with RISC-V than I am with ARM though it’s my understanding they’re quite similar.

          • ARM/RISC-V are load-store architectures, meaning they divide instructions between loading/storing and doing computation. x86 on the other hand is a register-memory architecture, having instructions that do both computation as well as loading/storing.

          • ARM/RISC-V also have weaker guarantees as to memory ordering allowing for less synchronization between cores, however RISC-V has an extension to enforce the same guarantees as x86 and Apple’s M-series CPU have a similar extension for ARM. If you want to emulate x86 applications on ARM/RISC-V these kinds of extensions are essential for performance.

          • ARM/RISC-V instructions are variable width but only in a limited sense. They have “compressed instructions” - 2 bytes instead of 4 - to increase instruction density in order to compete with x86’s true variable width instructions. They’re fairly close in instruction density, though compressed instructions are annoying for compilers to handle due to instruction alignment. 4 byte instructions must be aligned to 4 bytes, so if you have 3 instructions A, B and C but only B has a compressed version then you can’t actually use it because there must be 4 bytes between instructions A and C.

          • ARM/RISC-V also makes backwards compatibility entirely optional, Apple’s M-series don’t implement 32-bit mode for instance, whereas x86-64 still has “real mode” for running 16 bit operating systems.

          There’s also a number of other differences, like the number of registers, page table formats, operating modes, etc, but those are the more fundamental ones I can think of.

          Up until your post I had thought it exactly was the size of the instruction set with x86 having lots of very specific multi-step-in-a-single instruction as well as crufty instruction for backwards compatibility (like MPSADBW).

          The MPSADBW thing likely comes from the hackaday article on why “x86 needs to die”. The kinda funny thing about that is MPSADBW is actually a really important instruction for (apparently) video decoding; ARM even has a similar instruction called SABD.

          x86 does have a large number of instructions (even more so if you want to count the variants of each), but ARM does not have a small number of instructions and a lot of that instruction complexity stops at the decoder. There’s a whole lot more to a CPU than the decoder.

    • areyouevenreal@lemm.ee
      link
      fedilink
      English
      arrow-up
      0
      ·
      14 days ago

      The CISC vs RISC thing is dead. Also modern ARM ISAs aren’t even RISC anymore even if that’s what they started out as. People have no idea what’s going on with modern technology.

      X86 can actually be quite low power (see LPE cores and Intel Atom). The producers of x86 don’t specialize in that though, unlike a lot of RISC-V and ARM producers. It’s not that it’s impossible, just that it isn’t typically done that way.