The next router I’m getting!
Mmh only two Ethernet ports? I guess it’s for people who use mostly wifi only?
It’s just the router, I guess. Provide your own switch for more ports.
Exactly this. With VLAN tagging you can plug that single 2.5Gb connection into a 48-port managed switch and effectively have up to 47 different NICs if that’s what floats your boat. They’d all share the 2.5Gb but that’s still more than a lot of small networks need.
In a shared 2.5Gb scenario as you describe, would fully pegged upload/download be 1.25Gb each? Could it do 2.5Gb in both directions simultaneously? Assuming no compute bottlenecks.
It’s full duplex so it’s 2.5Gb each way simultaneosly. Most NICs support half-duplex but I don’t know of any good reason to use that. I used to have a BananaPi based router that could comfortably saturate it’s gigiabit interface. I assume there’s some kind of offloading going on.
It would be nice if they would make one with 4 or more LAN ports with at least one of them 2.5G and no WiFi. I need multiple access points to get enough coverage. The built in WiFi is useless to me since it won’t integrate nicely with Unifi.
You can hook it to a switch and a Wireless AP… Now your networking is modular.
I still don’t understand why this isn’t a 2.5G WAN and 2.5G LAN. Is it assuming that people are going to be using it as a router on a stick with a 1G WAN?
I can’t tell if WAN is Wireless Area Network or Wide Area Network.
WAN = Wide Area Network
WLAN = Wireless Area Network*Wireless Local Area Network
You want your $90 wi-fi router to do what now?
Given the 2.5Gb port also supports PoE in, I think the idea is that you can plug this into a 2.5Gb PoE port on a seperate managed switch and that’s the only connection you need; that’s certainly how I would use it. WAN connections could be plugged into that switch, along with the APs, user devices, servers, etc, with them seperated using VLANs. Assuming everything was gigabit except for that 2.5Gb link to the OpenWRT Thing™, you’d be hard-pressed to saturate that 2.5Gb port and you’d still have the gigabit port completely free for… whatever.
Nerd here. You confuse me:
WAN is some up-/downstream port connecting intranets remotely in my novice book. The measurement G doesn’t refer to some advertisement-thingy in terms of wireless speed (but Gigabyte) - Maybe it’s some form of Generation; But then I lack everything including my false base knowledge. Additionally I have never encountered “2.5G LAN” ever before: Would you be able to shed light on my shortcomings? 2.5 x 8 is 20 Gbit. I didn’t read about that size yet.
I love the specs and the pricing. Will definitely check it out.
What’s the point of having 1G on WAN and 2.5G on LAN? Traffic won’t hit the LAN port until it’s routed to the Internet, yet the WAN port is the bottleneck.
The LAN and WAN ports aren’t labelled as such on the device and can be configured to do anything. The 2.5Gb port can also be used to take in PoE so for a lot of people - myself included - this will be the only port that’s actually used, or at least the port that will be used the heaviest. The reason, I think, that it’s configured as WAN by default is so that the LAN port can be used to plug a laptop in directly without disconnecting the whole network.
It doesn’t matter. Port configuration can switch around and the bottleneck is still there. Traffic with in the broadcast domain (i.e. subnet) will handled by the switch alone.
There is WiFi onboard so it can have some actual benefits, depending on design and how user access resources, but how likely you’re going to saturate that 1/2.5G link? Not even you stream some 4K movies from Plex to iPhone will does that.
I think you might have missed the point: with a managed switch that 2.5Gb port can be used to handle multiple WAN and LAN connections simultaenously. My home network includes two WANs and six LANs split purely by VLAN tagging and that 2.5Gb connection should handle all of them just fine.
This person knows openwrt haha.
Maybe it can be used as a router on a stick.
Could it help with internal tasks, like self-hosted services or a business that transfers files around a lot?
Local NAS, local security cameras, in-house streaming, LAN multiplayer, local torrent-like data sharing (FYI, Windows Update and more uses the local network to share update between computers by default, so it gets downloaded once and then shared internally)
Then use a switch …
It’s default 2.5G WAN and 1G LAN. It also has wifi to use some of that bandwidth.
Turris Omnia & OpenWRT-ONE I wish we had this in Asia
Are you suggesting that AliExpress doesn’t ship to Asia?
Ali Express is not as widely-available as you think in Asia (Political stuff)
So, how is this any better than the Router Mini PCs you can find in Aliexpress (random example)?
WiFi
The very example I provided comes with an mPCI-e slot to install a WiFi card of your choosing.
Also they have SIM card slots so you can install a data SIM card and set-up a fallback configuration that switches to it if your landline internet connection goes down.
Of course. But this one comes with WiFi onboard and a case with antennas if you go for the clothed option.
It’s Open source hardware too
Whilst that’s a nice slogan, in Electronics “open source” doesn’t mean anywhere as much as it does in Software because it’s generally just knowing which components go into the circuit, which is but a fraction of the work (laying out the board is a massive chunk of work, in some cases most of it, and at high enough clock speeds circuit design is an art in itself).
Mind you, I like the Orange Pi and Banana Pi guys, and the idea of an SBC designed for being an open source router is pretty appealing, though nowadays maybe pfSense would be a better choice than OpenWrt.
Finally this thing having only 2 ethernet ports + WiFi makes it little more than a regular $70+ SBC board + a box - something easy enough to put together by any technically inclined person - which isn’t exactly exciting.
Open hardware (by oshwa definition) would include the board layout
pfSense would be a better choice than OpenWrt
I heard pfSense had a hard time with wireless radios, and that’s where OpenWrt shines comparably. Is that not true?
Most of those run OpenWrt or PfSense. Assuming the hardware is well-supported by the open source software it runs, there’s a argument to be made that there’s no difference. There’s always the risk of them using some weird chipset that won’t be supported in a year’s time. The only difference is that the OpenWrt One is specifically designed for OpenWrt with well-supported hardware.
https://lemmy.world/post/22632752?scrollToComments=true
This discussion is still on the front page
I’m not sure why I would get this openwrt one i stead of one from Turris
Isn’t RAM like the biggest bottleneck in routers causing bufferblaot and packet loss?
How does the article not mention how much RAM this device has?
Packet loss occurs when a router has to drop some packets because the buffer to store them is running out because the link where they are supposed to go is overloaded.
Bufferbloat is the issue where you make your queues too deep, i.e. you allocate too much RAM to buffering, while the cause of the buffering still exists, so the deeper queue just fills up anyway, so you haven’t improved anything, and have induced extra latency on the packets that do make it trough.
Deep buffers can help in situations where you have a step down in link speed, but only bursty and not sustained overloading of the slower output link.
The big bottleneck in router hardware is more about TCAM or HBM memory used to store the FIB of the global routing table. Since the table has grown so much the devices with less high speed memory can’t hold the table anymore, and if they start swapping the FIB to normal memory your routing performance goes to shit.
So not all of your concerns seem to apply to this class of device, but of course you’re right, The Register should have mentioned the RAM.
There are use cases for this router, but please don’t get the plastic clone sold by the same Chinese company that assembles the real thing. (The plastic clone costs a third, but doesn’t have detachable antennas and doesn’t accept mainstream OpenWRT because it uses an almost unknown CPU.)
Myself, when I need a high capability router (for me “capability” typically means “range”) I turn towards a Raspberry Pi and Alfa AWUS1900 wireless card. Yes, it lacks in throughput (USB is a severe bottleneck)… but with a bit of tweaking, you can talk out to 2 kilometers if terrain allows. :)
The price is right for sure, but it’s still sad they didn’t shoot for wifi 7. It was a pretty big leap in latency reduction.
I’m glad it’s open hardware as much as open software, but I think I’ll wait to see what the OpenWrt Two looks like.
I’m fine with the looks and hardware, except I’m not upgrading again for a wifi 6 router. I’ll wait till they make a 7. 7 has a couple pretty big improvements over 6.
I need this router.