• disguy_ovahea@lemmy.world
    link
    fedilink
    English
    arrow-up
    60
    arrow-down
    4
    ·
    edit-2
    27 days ago

    I don’t know why this is constantly criticized as a method of energy capture. Liquids allow for maximum surface area contact, creating more efficient heat transfer from the irradiated rods.

    Armchair nuclear physicists should release an improved model before being so critical of the most effective and reliable method of energy generation we currently have.

    • Deconceptualist@lemm.ee
      link
      fedilink
      English
      arrow-up
      10
      ·
      27 days ago

      Also, water is an amazing coolant. At the molecular level its hydrogen bonding contributes to a bulk property called heat capacity that ends up much higher than most other substances, meaning it can soak up a ton of energy per unit volume (and later release that energy, e.g. into a turbine). And there’s even more of that heat capacity in the phase transition from liquid to steam and back. It’s crazy good.

      It’s also super cheap and abundant. The main reason water isn’t the coolant for nearly everything is that it can be corrosive. Also steam can be quite dangerous due to all that energy it carries.

    • azi@mander.xyz
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      2
      ·
      26 days ago

      I mean it does seem kinda weird that running a heat engine to run a generator is more efficient than using a thermoelectric generator with no mechanical inbetween step.

      • frezik@midwest.social
        link
        fedilink
        English
        arrow-up
        2
        ·
        25 days ago

        Thermodyanmics in practice is weird like that. You would think solid state peltiers would be more efficient than a machine. Solid state usually is in any other application. Just this once, no, pelts kinda suck. They’ve been around for two centuries now and nobody has made a significant breakthrough to improve them.

          • tetris11@lemmy.ml
            link
            fedilink
            English
            arrow-up
            2
            ·
            26 days ago
            • where does hotty water go. If hotty water always hot can we always use the same water

            • are there no reactors that convert particle interactions into photons and capture it with photovoltaics?

            • azi@mander.xyz
              link
              fedilink
              English
              arrow-up
              2
              ·
              edit-2
              25 days ago
              1. Firefly make glow from food
              2. Solar panel make power from glow
          • beastlykings@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            2
            ·
            edit-2
            26 days ago

            The problem that I see is that unless that magic semiconductor is 100% efficient, turning all the heat energy into electrical energy, then there’s gonna be some left over, and things are gonna get too hot too fast too furious. So you’ll need to cool the thing, or part of it, maybe similar to a TEG using the Seebeck or Peltier effect?

            I have a few of these kicking around somewhere. They work, just not super efficient, at all, with current technology.

            My point is I feel like no matter what you’re gonna need extra parts to cool the thing. Water pumps etc etc. Why not just use steam? 🤷‍♂️

            Edit: nice diagram though!