I’m usually the one saying “AI is already as good as it’s gonna get, for a long while.”
This article, in contrast, is quotes from folks making the next AI generation - saying the same.
I’m usually the one saying “AI is already as good as it’s gonna get, for a long while.”
This article, in contrast, is quotes from folks making the next AI generation - saying the same.
It’s absurd that some of the larger LLMs now use hundreds of billions of parameters (e.g. llama3.1 with 405B).
This doesn’t really seem like a smart usage of ressources if you need several of the largest GPUs available to even run one conversation.
Larger models train faster (need less data), for reasons not fully understood. These large models can then be used as teachers to train smaller models more efficiently. I’ve used Qwen 14B (14 billion parameters, quantized to 6-bit integers), and it’s not too much worse than these very large models.
Lately, I’ve been thinking of LLMs as lossy text/idea compression with content-addressable memory. And 10.5GB is pretty good compression for all the “knowledge” they seem to retain.
Seeing as how the full unquantized FP16 for Llama 3.1 405B requires around a terabyte of VRAM (16 bits per parameter + context), I’d say way more than several.
I wonder how many GPUs my brain is
I don’t think your brain can be reasonably compared with an LLM, just like it can’t be compared with a calculator.
LLMs are based on neural networks which are a massively simplified model of how our brain works. So you kind of can as long as you keep in mind they are orders of magnitude more simple.
At some point it becomes so “simplified” it’s arguably just not the same thing, even conceptually.
It is conceptually the same thing. A series of interconnected neurons with a firing threshold and weighted connections.
The simplification comes with how the information is transmitted and how our brain learns.
Many functions in the human body rely on quantum mechanical effects to function correctly. So to simulate it properly each connection really needs to be its own super computer.
But it has been shown to be able to encode information in a similar way. The learning the part is not even close.
Well… isn’t the “learning part” precisely the point? I don’t think anybody is excited about brains as “just” a computational device, rather the primary function of a brain is … learning.
No, we are nowhere close to learning as the human brain does. We don’t even really understand how it does at all.
The point is to encode solutions to problems that we can’t solve with standard programming techniques. Like vision, speech recognition and generation.
These problems are easy for humans and very difficult for computers. The same way maths is super easy for computers compared to humans.
By applying techniques our neurones use computer vision and speech have come on in leaps and bounds.
We are decades from getting anything close to a computer brain.