• DominusOfMegadeus@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    0
    ·
    8 months ago

    Can anyone explain the significance of this? I’m pretty technology-literate, but I am not seeing a big advantage of this over a Linux machine? Genuinely curious.

    • bitfucker@programming.dev
      link
      fedilink
      English
      arrow-up
      0
      ·
      8 months ago

      I assume you are familiar with what CPU architecture is. The famous one is x86 and ARM. This is just another one of those called RISC-V.

      The significance is mostly political. US and allies have been trying to sanction China technologically. They even tried to block export of RISC-V, but since it is open source, they can just get fucked. Now, China can only get sub par GPU and limited CPU. Pushing for RISC-V means China is aiming to further develop it to be as capable as the CPU being sanctioned effectively making the sanction useless and even furthering Chinese manufacturing capabilities in the process.

      The big advantage is that this is technically more standardized and free. Unlike ARM which require license, RISC-V doesn’t so anyone can make their own CPU and get the software support already in place. Hopefully more CPU manufacturers will be created from the advancement of RISC-V making more fierce competition.

    • ddh@lemmy.sdf.org
      link
      fedilink
      English
      arrow-up
      0
      ·
      8 months ago

      RISC-V is a CPU architecture, like AMD64 or ARM. You can run Linux on it.

    • TurboWafflz@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      8 months ago

      This still runs Linux, or whatever else you want to run, it just has a RISC-V CPU instead of an x86 or ARM one

    • CaptainBasculin@lemmy.ml
      link
      fedilink
      English
      arrow-up
      0
      ·
      8 months ago

      RISC-V is a set of instructions implementable to processors that do not need licensing fees and controlling restrictions imposed. Due to its reduced instruction set; it uses less power in general but is harder to write compilers that work on it.

      Having it more popularised opens up the doors for more enthausists to enter developing with it.

    • nossaquesapao@lemmy.eco.br
      link
      fedilink
      English
      arrow-up
      0
      ·
      8 months ago

      One of the implications is the development and popularization of the RISC-V architecture, which is open and can open the market for more competition and less monopolies, among other things.

    • ShittyBeatlesFCPres@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      8 months ago

      RISC-V is an open source chip design. As of today, it’s still worse than x86 (a CISC—“complex instruction set” design) and ARM (a proprietary RISC—“reduced instruction set” design) but if history is any indication, open source will end up overtaking them in the same way that, for instance, 98% of supercomputers today run highly customized versions of Linux.

      There’s also some political connotations surrounding it because some countries don’t want high-end chip designs to be available to their perceived competitors (whether for protectionism reasons or military reasons) but it doesn’t matter.

      • ShittyBeatlesFCPres@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        edit-2
        8 months ago

        More info for anyone who wants it:

        Linux, being open, can already run on RISC-V while Windows ARM laptops are only really coming out now. Not sure if they have plans for RISC-V. Apple has long used ARM in phones and now their M chip laptops. Reduced instruction sets tend to have better battery life and (originally) worse performance so were ideal for mobile but over time, Intel/AMD (desktops/laptops) and ARM (basically all mobile chips) have borrowed ideas from each other. So, Apple’s ARM chips can be powerful and Intel/AMD chips can be power efficient if that’s the goal.

        So, the main advantage of RISC-V is that there’s no royalties or, in some cases, the baggage of aging designs that need backwards compatibility. RISC-I was originally designed as a teaching tool for universities that didn’t want to pay royalties for student toy models and wasn’t really a corporate thing. RISC-V is (the fifth version as the Roman numeral V implies), got good enough to be useful in the real world. And now there’s a consortium of companies funding it and hoping to one day not have pay royalties to make chips.

        So, there’s a lot of momentum behind RISC-V. It could easily be the primary architecture someday or, if nothing else, reduce the royalty rates of the other architectures.