For example, I love how the human brain consists of layers from different evolutionary phases (like the mammalian and reptilian brains), which reminds me of seeing remnants of teletype code in modern macOS.
FYI: The idea of a “lizard brain” is an outdated concept in neurology and evolution. The structure of modern brains, even in regions shared by mammals and reptiles, have novel and ancestral neurons showing that these regions haven’t remained static in reptiles, much less mammals.
Did not know that. But there’s still gotta be some legacy code that is not really needed for humans somewhere. Perhaps some stuff in our genes that’s just there and no one really knows what good it does, like some obscure dependency in conputer code
It’s not your fault. Pop psychology refuses to die. There is plenty of crap in good standing among scientists that’s absolute garbage.
The whole branch of evolutionary psychology is so subjective and immune from experiment it’s a bastion for cranks, misogynists, and scientific racists. And speaking of Scientific racism: IQ does not measure intelligence.
I am a pot smoker. My perfect vacation consists of a model, a view, and a controller.
I love finding similarities like these, and the one you mentioned about teletype is a new but really cool interpretation to me. Though I tend to view things more mechanically than naturally; I love playing factory games like Factorio and Satisfactory. I guess the natural metaphor I use most is the human body, which is a really complex system with lots of interacting subsystems. I forgot the name of the book & author but a medical doctor wrote a book on complex systems and said that any sufficiently complex system, like the human body, is always dealing with some degree of failure, so any artificial system needs to be fault-tolerant at many levels to continue functioning properly.
Not exactly about codebases, but I believe the universe operates like a cellular automaton (CA) at its most fundamental level. (Idea originally from Stephen Wolfram.)
A CA, if you don’t know, is a simulation in which a cell in a grid evaluates nearby cells and returns a value based on what it finds and the rules given to it. What happens next is called ‘emergent behavior’, and in some ways mimics physics and even primitive life. In fact, many physics models use CA already.
What this means to me is that there is ultimately only one type of energy/matter, and that everything we can detect (quarks, photons, atoms, etc.) is made from the same ‘stuff’, and that nothing is truly random… it’s just that we lack the tools and models to predict what happens below the smallest observable scale.
Genetics is like that.
I’ve heard the phenomenon you’re describing as the “lava layers”.