Theyre $1.25 per watt in south America right now (we have an energy crisis due to climate change caused drought)
Here in Belgium there used to be big government subsidies for solar panels 5-10 ago.
Now the same wattage battery + solar setup without any government subsidies is a good chunk cheaper than that time with the large subsidies.
Pretty cool and shows the power of government renewables subsidies. A huge percentage of houses in Belgium have solar panels now.(and electricity still costs 0.30€/kWh average because of fossil fuel energy lobbies)
Now that there is a local industry around it, most renovations and almost all new builds include them.
I’m fairly sure that all newly built houses in the UK require solar by law.
All the new houses around here with no solar would indicate that is not true. They’re not even required to have a south facing roof.
At least here in California, having solar panels on a non south facing roof usually only reduces production by 10-20%, as long as it’s not entirely north facing. Solar systems are often slightly undersized - it’s more cost effective to size it so it handles average load rather than the summer peaks you only see for a few weeks per year - so the actual difference for a given system may be less.
With my system, I see the best output from south-east facing panels since they get the morning sun. West facing panels are also fairly popular here due to time-of-use electricity plans. Some electricity plans have peak pricing from 4 to 9 pm, so people want to try and collect as much sunlight as possible during that period before sunset.
As your northern neighbors. We did subsidize it too, but now the privatized energy companies started whining that there wasn’t enough capacity, so now they charge you for creating free energy
Yes I’m considering buying a high power laser so I can send the energy back into space instead of paying the power companies for the privilege of giving them electricity.
Great idea! Some inspiration right here :
It’s kinda good but it completely destroyed the European manufacturing for solar
It is good, period.
Local manufacturing is politically advantageous and may employ some people at the same time, but that’s where benefits end.
Europe didn’t reject Chinese face masks during COVID-19, and Europe shouldn’t reject Chinese solar during a climate emergency.
Solve that first, and political struggles later.
Europeans demolished their manufacturing sector when they stripped all the wiring out of the walls during the austerity years.
You can’t blame people for buying foreign when you’ve been defunding domestic infrastructure for over a decade.
0.001$ per watt would be way ducking better
If EU wants to compete they’re welcome to utilize the same style of subsidies that enabled China to produce these so cheaply.
When panels were 30c/watt, projects at $1/watt in EU and US happened. 70c/watt was spent on labour, copper, support structures, and grid connection equipment. All of those can be locally produced, with possible exception of last item.
At 6c/watt, that is over 90% of power projects are local economy boosting instead of 70%. It provides cheaper energy that is useful for industrialization and cost of living benefits too. US tariffs on solar are entirely about protecting oil/gas extortion power instead of a $10B solar production industry that needs fairly expensive support.
Solar imports does not cause energy dependence. You have power for 30+ years with no reliance on continuous fuel supplies. Shoes and apparel is a $450B industry in US. You need new supplies every year, and it makes much more sense to secure supply in that industry for war on the world purposes.
You’re either an astroturfer or useful idiot spreading oil lobby talking points.
Either you believe the climate science or you don’t. If you do, you know that we don’t have time for industry protectionism.
Do not assume bad faith over anything you disagree with.
While I disagree with the original statement, hostility never changed anyone’s mind.
I’m not trying to change their mind. I’m trying to expose them.
hostility never changed anyone’s mind
Chronic abuse absolutely shapes human perception and behavior.
In this case, a lot of Lemmy has been so battered down by “China Bad” propaganda that they’ll straight up deny the threat of climate change to justify rejecting Chinese manufactured goods.
And good store that will sell me a super cheap and good set including inverter here in Germany? I mean they’re on Amazon for 250€, but maybe there is a better shop?
Any of the Discounters, really. ALDI, Lidl, Netto, etc have regular offers in their online shops.
Hmm. But with those three, the simple sets (2x400W + power inverter) seem to be ~100€ more expensive than on Amazon. Maybe I have to go with Amazon then. Thanks anyways! I’ll keep an eye on discounted offers.
A hundred euro is quite a difference. Didn’t expect it to be that much, tbh.
The only consolation is that, with the discounter sets, you will get something that has been tried and tested and everything is according to the relevant technical standards. Should be, anyway.
Just have to buy 1100 panels 😋 but then the price is 0.055€/watt …
I Want one, but only one or a couple, to put on my balcony…
Thousands of people buying rooftop panels was never going to be the best way towards a Water/Wind/Solar (WWS) future. Fitting panels to the roof has to work around the roof geometry and obstructions like vents. That makes every job a custom job. It also means thousands of small inverters rather than a few big ones.
Compare that to setting up thousands of panels on racks in a field. As long as it’s relatively open and flat, you just slap those babies down. You haul in a few big inverters which are often built right into shipping containers that can just be placed on site, hooked up, and left there. Batteries need inverters, too, so if your project includes some storage, then you only need one set of inverters.
I get the feeling of independence from the system that solar panels on the roof gives people, but it’s just not economically the best way to go. The insanely cheap dollars per MWh of solar is only seen when deploying them on a mass scale. That means roofs of commercial/industrial buildings or bigger.
Rooftop units might not be the least expressive, but they are absolutely the way to go. The less we rely on the utilities, the more demand we take off of their adding grid, that they refuse to upgrade. It also means more energy independence. A friend of mine has a small rooftop setup that has completely offset his electricity isn’t to the punt that he bought a plugin hybrid that never goes out battery for his day to day travels and costs him nothing to charge.
If you want energy independence, push for community solar. Neighborhoods or municipalities get together to own their own solar field. Then you get a measure of independence while also taking advantage of economies of scale.
$60k per MW or $210M for a nuclear reactors worth (3.5GW). Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land (1.75km² Vs ~40km²) but at 1% of the cost, why are we still talking about nuclear.
(I’m using the UKs Hinckley Point C power station as reference)
I think there’s a contingent of people who think nuclear is really, really cool. And it is cool. Splitting atoms to make power is undeniably awesome. That doesn’t make it sensible, though, and they don’t separate those two thoughts in their mind. Their solution is to double down on talking points designed for use against Greenpeace in the 90s rather than absorbing new information that changes the landscape.
And then there’s a second group that isn’t even trying to argue in good faith. They “support” nuclear knowing it won’t go anywhere because it keeps fossil fuels in place.
What isn’t sensible about nuclear? For context, I’m coming from the US in an area with lots of empty space (i.e. tons of place to store radioactive waste) and without much in the way of hydro (I’m in Utah, a mountainous, desert climate). We get plenty of sun as well as plenty of snow. Nuclear should provide power at night and throughout the winter, and since ~89% of homes are heated with natural gas, we only need higher electricity production in the summer when it’s hot, which is precisely what solar is great for.
So here’s my thought process:
- nuclear for base load demand to cover nighttime power needs, as well as the small percentage of homes using electricity for heat
- solar for summer spikes in energy usage for cooling
- batteries for any excess solar/nuclear generation
If we had a nuclear plant in my area, we could replace our coal plants, as well as some of our natural gas plants. If we go with solar, I don’t think we have great options for electricity storage throughout the winter.
This is obviously different in the EU, but surely the nordic countries have similar problems as we do here, so why isn’t nuclear more prevalent there?
Because it makes no sense, environmentally or economically speaking. Nuclear is, as you said, base load. It can’t adjust for spikes in demand. So if there’s more energy in the grid than needed, it’s gonna be solar and wind that gets turned off to balance the grid. Investments in nuclear thus slow down the adoption of renewables.
Solar is orders of magnitude cheaper to build, while nuclear is one of the most expensive ways to generate electricity, even discounting the waste storage, which gets delegated the the public.
Battery technology has been making massive gains in scalability and cost in recent years. What we need is battery arrays to cover nighttime demand and spikes in production or demand, combined with a more adaptive industry that performs energy intensive tasks when it’s abundant. With countries that have large amounts of solar, it is already happening that during peak production, energy cost goes to zero (or even negative, as traded between utilities companies).
About the heating: gas can not stay the main way to heat homes, it’s yet another fossil fuel. What we need is heat pumps, which can have an efficiency of >300% (1kWh electricity gets turned into 3kWh of heat, by taking ambient heat from outside). Combined with large, well-insulated warm-water reservoirs, you can heat up more water than you need to higher temperature during times of electricity oversupply, and have more than enough to last you the night, without even involving batteries. Warm water is an amazing energy storage medium. Batteries cover electricity demand as well as a backup in case you need uncharacteristically much water. This is a system that’s slowly getting adopted in Europe, and it’s great. Much cheaper, and 100% clean.
We also should consider HVDC lines. The longest one right now is in Brazil, and it’s 1300 miles long. With that kind of range, wind in Nebraska can power New York, solar in Arizona can power Chicago, and hydro all around the Mississippi river basin can store it all. We may have enough pumped hydro already that we might not even need batteries, provided we can hook it all up.
HVDC is much more expensive than Hydrogen pipelines, which doubles as storage and transmission, and can provide continent wide resilience, even when local renewables provide much cheaper power when it is available than either long distance electric or H2 power.
The studies on hydrogen pipelines tend to assume there’s some existing reservoir of hydrogen. Making hydrogen in a green way is expensive, and that completely ruins its economic viability.
The expense part gets taken care of with OP’s solar prices. Battery costs help too.
You bring up heated water as a method of storage, and it reminds me of a neighborhood in Alberta, Canada that uses geothermal + solar heated water storage for 52 homes. They’ve been able to successfully heat the entire neighborhood with only solar over the winter in 2015-2016 and have gotten > 90% solar heating in other years.
https://en.wikipedia.org/wiki/Drake_Landing_Solar_Community
There’s a huge number of new storage technologies being developed, and the fact that some even work on a seasonal basis for long term storage is amazing.
That’s pretty cool! Still seems to have some issues, but as the technology matures, that seems like a promising technology. I didn’t know seasonal warm water storage was a thing
What we need is battery arrays
I absolutely agree. My support for nuclear is not instead of renewables, but in addition to it. Nuclear is a proven technology, and at least in the US, we have a lot of space where we can store waste relatively inexpensively (nobody’s going to care about a massive landfill in Nevada).
The problem with going for 100% renewables is that I don’t think we can really keep up with battery production, and if we push for dramatically increasing our energy storage capacity (whether that’s chemical batteries, pumped hydro, etc), it’s going to cost a ton to transition. Solar is cheaper than nuclear, but solar + battery backup currently is not, especially if it needs to run over the winter when solar generation is much lower.
I’m not saying we should stop installing battery-backed solar projects, but that we should add nuclear to the list. Our electricity demand will only continue to increase, so we need multiple solutions to replace coal and eventually natural gas. One of the major cost and time limitations for nuclear is construction, and that’s because we don’t build many of them. If we line up multiple plant projects at the same time, we can make better use of our engineering resources (it’s a lot easier to build 10 of something back to back than 10 of something months or years apart), which will make nuclear more attractive compared to other options.
gas can not stay the main way to heat homes
Agreed, and I’ve actually been looking into heat pumps for my own home. I already have an external AC unit, so theoretically the transition shouldn’t be that hard (air ducts already exist).
The problem is that, in my area, winters get pretty cold, and heat pumps are a lot less efficient at heating when it’s cold. The solution is to dig a deep hole to bury the heat exchangers so they get a more consistent temperature to maintain efficiency, and that’s a really expensive project for existing structures (not bad for new construction). The transition to heat pumps is going to be very slow because of that large upfront cost/poor efficiency in winter.
Even if this wasn’t an issue, there’s still the massive problem of existing electricity production (in my area) being fueled by coal and natural gas. If I switch to a heat pump, I may be polluting more than if I stuck with gas (it’s pretty close last I checked). My state (ignoring transportation) gets something like 1/3 of its energy from coal, about half from natural gas, and most of the rest comes from solar (and a little from wind). We need something to handle that base load supply, and installing batteries is going to be expensive (esp. since hydro isn’t really an option in our desert) and probably take many years regardless. Nuclear can be built today, and in my area, it can be built on the other side of a mountain range from the bulk of the population.
Warm water is an amazing energy storage medium
I doubt we have enough water here in the desert to handle that. We already have problems with our existing inconsistent water supply for regular users, locking up even more water is going to be a really tough sell.
I agree it’s going to be a challenge. But I’m sceptical nuclear is going to help there; from historical experience, it takes upwards of 20 years to build a reactor. Even if that gets expedited through modern technologies, we’re still talking something like 15 years until they come online, and you’re still paying all the upfront costs throughout that time. Whereas solar can go from concept to grid in 2 years, and batteries aren’t much worse.
The desert indeed makes large-scale warm water storage infeasible, but the kind of home setups I mentioned first should still be good to go, it’s basically only your preexisting heating loop times 2 or 3, that’s negligible compared to farming demands, and it stays in the loop forever (except for leakage). Storing warm water that you’d use anyways also doesn’t increase demand.
The desert has the benefit that solar can be really well calculated, since you (mostly) need to consider seasonal changes in sunlight, not cloud cover. That can be planned around
You got a point about the heat pump efficiency though. For new communities there should be a trend towards centralized heating that provides for a whole city block, to make use of economy of scale and raise efficiency beyond what is reasonable for a single home. But that’s dreaming to far, probably
but at 1% of the cost, why are we still talking about nuclear
Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land
The land thing isn’t anywhere near enough of a concern for me, especially when dual uses of land are quite feasible.
24/7 is just about over commissioning and having storage. Build 10x as much and store what you generate. At those sorts of levels even an overcast day generates.
You have to have some base load it can’t be all renewable because renewables just aren’t reliable enough. The only way to get 100% reliability from solar for example would be to build a ring of panels around the equator (type 1 civilization stuff).
Of all the options for base load, nuclear is the least worst, at least until we can get Fusion online, but you know that’s always 20 years away.
Storage. It’s all about storage. In exactly the same way that our water is handled. We have reservoirs to handle the times when natural water supply is low.
That’s why we have hydro. Its a giant battery. We can also make synthetic methane.
We absolutely can do 100% renewable.
Hydro is great but it’s not clean it requires you to flood vast areas of land, it’s quite damaging to wildlife.
It is also highly situation dependent, you be quiet exactly the right kind of geography in order to be able to build hydro and then you require that there is no one living in the affected area otherwise it gets very expensive very quickly assuming you’re allowed to do it at all.
I didn’t say hydro is perfect. It is renewable. And its a giant battery.
Good news perhaps but I’m sure I won’t see any benefit in Scotland, still thousands to add solar panels.
You know, if you people wanna ditch the Kingdom and join the club, I don’t think it’s too late.
Scotland has really good wind power, anyway. Between that, nuclear, and a few other renewable sources, you guys are down to 10% fossil fuel energy use. So don’t worry about solar.
Assuming these prices are ideal for a solar grid, which EU country(s) would have the highest chance of shifting towards solar; I wonder