• Victoria@lemmy.blahaj.zone
    link
    fedilink
    English
    arrow-up
    142
    arrow-down
    3
    ·
    9 months ago

    From a grid stability point, you can’t produce more than is used, else you get higher frequencies and/or voltages until the automatics shut down. It’s already a somewhat frequent occurence in germany for the grid operator to shut down big solar plants during peak hours because they produce way more power than they can dump (because of low demand or the infrastructure limiting transfer to somewhere else)

    Negative prices are the grid operator encouraging more demand so it can balance out the increased production.

    • antimongo@lemmy.world
      cake
      link
      fedilink
      English
      arrow-up
      6
      ·
      9 months ago

      Piggybacking on your grid stability point, another issue I don’t see getting addressed here is ramp rate.

      If we install enough solar where 100% of our daytime load is served by solar, that’s great. But what about when the solar starts to drop off later in the day?

      A/Cs are still running while the sun is setting, the outside air is still hot. People are also getting home from work, and turning on their A/Cs to cool off the house, flipping on their lights, turning on the oven, etc.

      Most grids have their peak power usage after solar has completely dropped off.

      The issue then becomes: how can we serve that load? And you could say “just turn on some gas-fired units, at least most of the day was 100% renewable.”

      But some gas units take literal hours to turn on. And if you’re 100% renewable during the day, you can’t have those gas units already online.

      Grid operators have to leave their gas units online, running as low as they can, while the sun is out. So that when the peak hits, they can ramp up their grid to peak output, without any help from solar.

      There are definitely some interesting solutions to this problem, energy storage, load shifting, and energy efficiency, but these are still in development.

      People expect the lights to turn on when they flip the switch, and wouldn’t be very happy if that wasn’t the case. Grid operators are unable to provide that currently without dispatchable units.

      • Vilian@lemmy.ca
        link
        fedilink
        English
        arrow-up
        4
        ·
        9 months ago

        If we install enough solar where 100% of our daytime load is served by solar, that’s great. But what about when the solar starts to drop off later in the day?

        Store the surprus of energy from the solar panels and use that as a buffer with batteries or gravity

        But some gas units take literal hours to turn on. And if you’re 100% renewable during the day, you can’t have those gas units already online.

        Why not? Just time it and start it hours before, wind energy could help in that too

        • antimongo@lemmy.world
          cake
          link
          fedilink
          English
          arrow-up
          3
          ·
          9 months ago

          Gravity energy storage doesn’t scale well. I’ve replied to other comments with more detail on this.

          There are more feasible energy storage technologies out there, but these are super cutting edge and are not ready for grid-level deployment yet.

          The future of grid level energy storage is almost certainly not going to be gravity based. At least not on a large scale.

          You can’t have 100% of load be renewable/solar and have gas units online on top of that. That’s over generation. You have to match the supply exactly with the demand. If you mismatch, you destabilize the grid. Undersupply causes blackouts, oversupply melts power lines.

          If a unit takes 10 hours to start, solar hours are from 6am to 6pm, and peak load is at 7pm with 0% solar; when do you recommend we start this unit? At the minimum, we’d have to order it on at 7am. Units have to run at a minimum load, let’s say 100MW for this unit. So now you can’t 100% solar from 7am to 6pm, you have to leave 100MW of room for this base loaded unit.

          This doesn’t even factor in regulatory requirements like flex, spinning reserve, and other balancing and reliability requirements. Grids are required to have emergency units available at an instant to prevent mass destabilization if parts of the grid fail.

          • Vilian@lemmy.ca
            link
            fedilink
            English
            arrow-up
            3
            ·
            9 months ago

            10hours to start oof, i though it was less, maybe individual batteries in house, like we have with water?, that wouldn’t be cheap for industry tho

            • antimongo@lemmy.world
              cake
              link
              fedilink
              English
              arrow-up
              2
              ·
              9 months ago

              To be fair 10 hours is either a pretty old or pretty massive unit. 2 hours might be a little more reflective of modern gas turbines. Especially combined cycles. But depending on how big the peak is, you need every available unit, both old and new.

              Ultimately the issue is it’s very hard to meet that peak when all of your gas units have to go from 0 to 100% output. Much easier (and more reliable) to take them from 10% to 100%. Which is what grid operators do currently.

              Yea an affordable battery in every home would be a slam dunk. This is kinda already happening with vehicle2grid (v2g) electric car protocols. But not everyone has an EV yet. And operators are still working out the kinks using this in the grid.

              Plus the lithium batteries in cars have their own supply/recycling issues.

    • unexposedhazard@discuss.tchncs.de
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      4
      ·
      9 months ago

      But the thing is, you CAN simply turn them off at the press of a button (or an automated script) so its really a complete non issue. As long as big solar installations control systems are accessible by the grid operators, it should be fine.

  • bitjunkie@lemmy.world
    link
    fedilink
    English
    arrow-up
    45
    arrow-down
    6
    ·
    9 months ago

    Literal free goddamn energy from the sky and these greedy fucks are going to burn the world down because they can’t flip it for a buck

  • Asafum@feddit.nl
    link
    fedilink
    English
    arrow-up
    32
    arrow-down
    1
    ·
    9 months ago

    This reminds me of a quote (that probably isn’t real) from Westinghouse to Tesla in regard to wireless energy transmission he was trying to create.

    “This is wonderful, but where would we put the meter!?”

  • B16_BR0TH3R@lemmy.world
    cake
    link
    fedilink
    English
    arrow-up
    39
    arrow-down
    12
    ·
    edit-2
    9 months ago

    This is idiotic. The fact is your electricity transmission system operator has to pay a lot of money to keep the grid stable at 50 or 60Hz or your electronics would fry. With wind and especially with solar power, the variable output is always pushing the frequency one way or the other, and that creates a great need for costly balancing services. Negative pricing is an example of such a balancing service. Sounds good, but for how long do you think your electricity company can keep on paying you to consume power?

    • Blackmist@feddit.uk
      link
      fedilink
      English
      arrow-up
      4
      ·
      9 months ago

      Sure, but for all the times my electricity goes negative for half an hour, the monthly bill indicates that is vastly outweighed by all the times that it isn’t.

    • uis@lemm.ee
      link
      fedilink
      English
      arrow-up
      3
      ·
      9 months ago

      Just have few percent of spare capacity. If suddenly it will become too sunny, you can just disconnect solar cells. If not sunny enough, then connect them back.

      Obviously I’m talking only about day - the only time when solar panel output can fluctuate.

    • EmperorHenry@discuss.tchncs.de
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      2
      ·
      9 months ago

      With wind and especially with solar power, the variable output is always pushing the frequency one way or the other, and that creates a great need for costly balancing services.

      Speaking as a flashlight enthusiast…there’s many different ways to get a constant and consistent current. Sure we’d need to scale it up from a pocket-sized device to a whole fucking power grid, but with a big enough driver with the right arrangement of capacitors and all that, you’d easily be able to get a totally consistent current out of wind or solar

      • untorquer@lemmy.world
        link
        fedilink
        English
        arrow-up
        5
        ·
        9 months ago

        Having knowledge in power electronics i can confidently say the DC output of solar is easily and regularly inverted in phase with grid. In fact, DC is often used for undersea cables switching AC to dc then back to AC, All at extremely high voltage and varying demand(up yo 600kV/600MW but varying by installation).

        Wind turbines go online after the blades start spinning and connect to the grid in the same way as any other generator, controlled by internal electronics. Power is regulated through blade feathering and can be turned off as supply exceeds demand. This, other than for maintenance reasons, is why you might see one turbine spinning while the next is standing still. This capability actually means the grid is MORE stable with wind power.

        Any further fluctuation is managed in the same way as conventional power generation.

    • tweeks@feddit.nl
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      2
      ·
      9 months ago

      Why isn’t this as easy as storing some of that excess energy in a home battery and letting the rest down in a wire into the ground? Then if it’s smart enough it could only give back energy when needed.

      • untorquer@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        ·
        9 months ago

        The easiest solution is to send the power somewhere else where it can offset the use of fossil fuels. This solution is fraught with political hurdles, subject to market forces (due to privatization) and often grid compatability issues(looking at you Texas). It is, however, a time tested and common method for mitigating excess production.

      • B16_BR0TH3R@lemmy.world
        cake
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        9 months ago

        Well, that’s what they’re doing some places. The batteries assets are not in private homes usually though, they’re by themself or run by power-consuming industries. Batteries are expensive though, and they degrade quickly if you use them wrong. In the EU, ENTSO-E defines the market rules, trade systems and messaging systems that energy companies and asset owners play by. Sometimes the revenue-generating asset is a battery, sometimes it’s a hot water boiler, wind park, factory, hydro plant etc.

    • booly@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      3
      arrow-down
      2
      ·
      9 months ago

      This whole thread has way too many people who see the price as some kind of made up number that dictates how people behave, rather than recognizing that the price is a signal about the availability of useful real-world resources.

      Even if the prices were strictly mandated by a centrally planned tariff that kept the same price throughout the day, every day, we’d still have the engineering challenge of how to match the energy fed into the grid versus taken out of the grid.

      The prices are just a reflection of that technical issue, so solving it still needs to be done.

    • imgcat@lemmy.ml
      link
      fedilink
      English
      arrow-up
      1
      ·
      9 months ago

      pay a lot of money to keep the grid stable at 50 or 60Hz or your electronics would fry

      Absolutely not. Please don’t make things up.

  • Phoenicianpirate@lemm.ee
    link
    fedilink
    English
    arrow-up
    27
    arrow-down
    2
    ·
    edit-2
    9 months ago

    Didn’t China have a community use lots of solar and they ended up with such a glut of excess power that they didn’t know what to do with it?

    All communities should have that. Electricity should be free and it would be plausible to make it free. Except for maintenance costs, but that would be peanuts compared to what we pay now.

    • milicent_bystandr@lemm.ee
      link
      fedilink
      English
      arrow-up
      2
      ·
      9 months ago

      Would it really be peanuts? Solar panel manufacture isn’t exactly cheap, nor entirely sustainable (see, for instance, the black market for sand; and economics/politics over lithium mining). Solar panels also degrade; new technology replaces old and has to be paid for and made and installed; the infrastructure tying it all together isn’t free either…

      I feel like solar power, for all its excellence, is not as simple as upgrade as my rts-/tycoon-/sim-gamer’s mind thinks it should be.

      • Phoenicianpirate@lemm.ee
        link
        fedilink
        English
        arrow-up
        4
        ·
        9 months ago

        Upgrading is never simple or straightforward. But it is something we need to do otherwise we won’t have a planet to live on.

        • milicent_bystandr@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          1
          ·
          9 months ago

          Agreed, but there’s a real cost involved and a real cost analysis to do. Like with the question of people upgrading to more efficient cars (and scrapping the old) or running the old for longer to minimise car manufacture.

  • absGeekNZ@lemmy.nz
    link
    fedilink
    English
    arrow-up
    23
    ·
    9 months ago

    The “problem” of negative energy costs is easy to solve, but quite costly.

    Build water desalination/carbon capture and storage/hydrogen generation plants that only run when the price goes below 0; even though these are very energy intensive, they would help stabilize the grid.

    Then build more solar; you want to try to have the daytime price stay in the negative as often as possible.

    • uis@lemm.ee
      link
      fedilink
      English
      arrow-up
      3
      ·
      9 months ago

      Build water desalination/carbon capture and storage/hydrogen generation plants that only run when the price goes below 0; even though these are very energy intensive, they would help stabilize the grid.

      Basically opportunistic energy consumption.

    • Ilovethebomb@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      1
      ·
      9 months ago

      you want to try to have the daytime price stay in the negative as often as possible.

      That’s not exactly conducive towards people building more solar.

      • absGeekNZ@lemmy.nz
        link
        fedilink
        English
        arrow-up
        5
        ·
        9 months ago

        The solar isn’t the goal; the energy is enabling the value in other parts of the economy.

        In fact; energy supply is so important to the reasonable functioning of the economy. It should be taken out of the profit driven cycle of business.

        Look at what happened with WPI in Ohakune and PanPack when energy prices sky rocketed a few months back.

        • Ilovethebomb@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          9 months ago

          Even if our energy market wasn’t profit driven, we would still have a shortage of energy, and either we would be burning up fossil fuels at an astonishing rate and a huge loss, or a number of heavy power users would be shutting down.

          Price is one way we have to control demand, but if we didn’t use it, we would need another system instead.

  • Aceticon@lemmy.world
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    2
    ·
    9 months ago

    The real special bit is that this crap isn’t coming from, say Harvard, who one expects is all about business, but MIT which is supposed to be about Science and Engineering.

    • ayyy@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      9
      ·
      9 months ago

      The media arm of MIT has been steaming garbage for years and constantly misrepresents the studies from their own researchers for clickbait.

      But that aside, even though the engineering work out of MIT is solid, their economic opinions heavily reflect the fact that it’s an institution full of trust fund nepotism.

    • milicent_bystandr@lemm.ee
      link
      fedilink
      English
      arrow-up
      3
      ·
      9 months ago

      Well then there is another way of seeing this: there is an engineering/difficulty with such large power fluctuations that “drive electricity prices negative” because it implies a much more variable demand on existing power infrastructure.

      • ayyy@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        3
        ·
        9 months ago

        You’re way better at this than the clowns in the MIT press department and you only tried for a few seconds. Which means the people who wrote the headline are either so stupid they can’t tie their own shoes, or they have a malicious agenda. I lean towards the latter.

    • qjkxbmwvz@startrek.website
      link
      fedilink
      English
      arrow-up
      2
      ·
      9 months ago

      The grid needs to balance input and output. You can’t just “throw away” power.

      It’s a real problem — not the “electric companies are losing money” part, but the “we need to keep the grid balanced” part.

      • Aceticon@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        edit-2
        9 months ago

        That can indeed be a problem.

        It is however not what the MIT guys wrote as being the problem: they quite literally said the problem with too much solar generation at peak times is that it drives prices down.

        Also, curiously, the prices being driven down actually helps with the real technical problem that you point out: those consumers who can move their consumption times will tend to move them to those hours when the prices are lowest thus helping solve it. Same thing goes for investors: the more the price is pushed down at peak solar production times, the more appealing it is to invest in things like storage or even solutions with lower efficiency (such as green hydrogen or electricity transportation cables to markets less well served by solar).

        The low prices aren’t the problem from a technical point of view, quite the contrary: they’re an incentive to invest in solutions (which is going to employ a lot of techies, so supposedly MIT would be all in favor of it)

  • Geobloke@lemm.ee
    link
    fedilink
    English
    arrow-up
    11
    arrow-down
    1
    ·
    9 months ago

    Negative prices are an opportunity and people will take advantage. This would be the perfect time to change batteries, make hydrogen, send compressed air into an old mine or refill a dam

  • el_abuelo@programming.dev
    link
    fedilink
    English
    arrow-up
    8
    ·
    9 months ago

    Call me stupid, but why don’t they just charge enough to cover costs and a bit of profit? The current pricing model is broken if you can’t run a solar plant profitably.

    • booly@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      4
      ·
      9 months ago

      why don’t they just charge enough

      Because who would pay 10 cents per kilowatt hour when there’s someone else who will pay someone to take that energy off their hands?

      The problem is caused when the market clearing price is lower than the cost it took to produce it, and some of those costs are in the past.

      It’s like getting a boat and going fishing. If you pay $10,000 for the cost of the trip, and bring back $8,000 worth of fish, you can’t just force people buy them from you for a 25% markup.

    • ayyy@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      9 months ago

      The state of California has a great live and historical dashboard of power production and consumption that you can click around in to get an intuitive sense of where the problems arise. We have more batteries than anywhere else in the world but it’s still nowhere near enough. CAISO daily outlook

      Edit: the supply dashboard is more useful for this discussion: CAISO supply

    • Rivalarrival@lemmy.today
      link
      fedilink
      English
      arrow-up
      1
      ·
      9 months ago

      It takes hours to days to start, stop, or change nuclear and coal generation rates. You can’t just turn it on and off as needed. If you need coal or nuclear to meet overnight demand, you have to leave it running during the day as well. If you need 2MW of power overnight and 5MW during the day, you can only add 3MW of solar generation before you are putting too much power on the grid. If your solar puts out 5MW, you have to find out something to do with the extra 2MW that your nuclear plant needs to output continuously.

      If you size your solar plants to produce 3MW in the middle of winter, then in summer they are putting out about 9MW. What can you do with the 6MW excess?

      There is no single solution to manage every issue, but the single most important is “demand shaping”. We need to reduce demands that can only be met with baseload generation. We need to move that demand to peak solar production times. We need to increase daytime demand to incentivize greater investment into solar. We need east/west transmission lines across every continent, shifting power from wherever the sun is up to wherever the sun is down.

      Storage has to be a very distant second. Every 1 MW we time shift from night to day takes 2MW of load off the grid.

  • Tudsamfa@lemmy.world
    link
    fedilink
    English
    arrow-up
    9
    arrow-down
    1
    ·
    9 months ago

    Before commenting, you should know there are 2 types of solar panels:

    • the ones owned by people (which may or may not feed into the grid)
    • the ones owned by corporations

    The article is probably about the 2nd kind (if you can only sell energy when there is a surplus, your company will fail), while the twitter user makes it seem like the 1st kind was meant. We probably need to built more of both types. Identify what type the other commenters are talking about before getting in any arguments here.

  • TheDemonBuer@lemmy.world
    link
    fedilink
    English
    arrow-up
    12
    arrow-down
    4
    ·
    9 months ago

    That’s not what they were saying, they were saying that it’s not economical to have an abundance of electricity when people need it the least, and little or no electricity when people need it the most. It would be one thing if utilities could sell solar electricity at peak demand hours for a higher price, to make up the difference, but that’s just when solar generation is slowly down significantly or stopped entirely.

    And, yes, I know that battery storage could theoretically solve this, but battery technology is not currently capable of providing electricity for the entirety of the time we need it. New technologies are being developed right now with the goal of achieving long term grid storage, but they are still in the R&D phase. I’m confident a suitable storage technology, or multiple technologies, will eventually come to market, but it’s going to take a while.

    Regardless, it is likely we will always need some kind of on-demand power generation to supplement renewables and maintain grid stability, and I think nuclear is the best option.

    But we shouldn’t act like the problem is that utilities are just greedy. Many utilities aren’t even for-profit companies, as many are either not-for-profit cooperatives or public entities. Sure, there are also many for-profit power utilities as well, maybe even some with connections to the fossil fuel industry, but generally power utilities are not some great villain.

    • axx@slrpnk.net
      link
      fedilink
      English
      arrow-up
      4
      ·
      9 months ago

      A thing you can use which gets forgotten often in the conversation is “natural” / physical batteries, or better put stores of latent energy. Essentially, “push heavy thing up hill, make it come down later”.

      I know little about it, but you can release the kinetic energy stored in heavy objects at higher altitudes basically whenever, using say a dynamo on the wheels of a wagon of heavy rocks you previously pushed uphill.

      • antimongo@lemmy.world
        cake
        link
        fedilink
        English
        arrow-up
        1
        ·
        9 months ago

        There have been proposals for technology like this. Putting a motor above an abandoned mineshaft and suspending a weight. Charged by raising the weight, discharges by lowering against a load.

        The issues is the capacity ends up being pretty tiny, not really at a grid level.

        You’d need a TON of motors to get to something a grid could actually use to stabilize, and by then the economics don’t work out. Let alone the actual space requirements of that many motors

        Additionally, a lot of the advantages of batteries come from local storage, where you don’t need to transmit the energy long distances anymore, and these “natural” batteries tend to take up a lot of space.

        A better and more accessible form of “natural” energy storage are already in most homes. Heat pump water heaters in homes could do things like make the water extra hot during solar hours, when power is cheap, so they can make it until the next morning without turning back on.

        Or with better building envelopes (insulation) we could run more cooling during solar, maybe even make a ton of ice. Then later in the day, when solar drops and the grid load peaks, you can still cool the building with ice.

    • volodya_ilich@lemm.ee
      link
      fedilink
      English
      arrow-up
      3
      ·
      9 months ago

      abundance of electricity when people need it the least

      Isn’t peak consumption around middle of the day for most countries?

      it’s not economical

      Mfw electricity being cheap to generate is not economical

      • TheDemonBuer@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        1
        ·
        9 months ago

        Isn’t peak consumption around middle of the day for most countries?

        I can’t speak to other countries, but in the US peak electricity demand generally occurs in the early evening.

        Mfw electricity being cheap to generate is not economical

        Cheap electricity is great for consumers, but not necessarily for producers. Some people might say, “well, screw producers,” but even if you take profit out of the equation, electric utilities need to be able to at least cover their expenses, and you can’t do that if the amount of electricity you’re generating relative to the demand is so high the price actually goes negative (meaning the utility is actually paying the consumer). Again, that’s good for consumers, but I’m sure you can see how that’s not a sustainable business model. And, like I mentioned before, it would be one thing if utilities could make up for this by selling for a higher price during peak, but by that point the sun is either setting or already set, depending on the time of year, so there’s just no solar electricity to sell, at any price.

        • volodya_ilich@lemm.ee
          link
          fedilink
          English
          arrow-up
          5
          ·
          9 months ago

          Cheap electricity is great for consumers, but not necessarily for producers. Some people might say, “well, screw producers,” but even if you take profit out of the equation, electric utilities need to be able to at least cover their expenses, and you can’t do that if the amount of electricity you’re generating relative to the demand is so high the price actually goes negative (meaning the utility is actually paying the consumer). Again, that’s good for consumers, but I’m sure you can see how that’s not a sustainable business model.

          Fully agreed: let’s eliminate business from the issue, and create national, for-service electric grids, that produce the cheapest renewables at all possible times in the most efficient way possible, disregarding hourly profit and taking into account exclusively the cost in €/kWh produced over the lifetime of each energy source.

          Suddenly it’s obvious that the problem isn’t with renewables, but with organising the electric grid as a market

          • TheDemonBuer@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            9 months ago

            Public utilities still need to cover their expenses, and they’re not going to be able to do that if they’re charging negative rates in the middle of the day and have no electricity to sell once the sun goes down.

            • volodya_ilich@lemm.ee
              link
              fedilink
              English
              arrow-up
              2
              ·
              9 months ago

              Do I really need to explain the concepts of taxes, subsidies, or fixed prices regardless of demand, to an adult?

              • TheDemonBuer@lemmy.world
                link
                fedilink
                English
                arrow-up
                1
                arrow-down
                1
                ·
                9 months ago

                I’m not sure what you mean. Are you saying that public utilities should be funded from taxes instead of charging for service? I don’t think having tax payers pay public utilities to overproduce electricity is going to fix the problem, especially since no amount of tax dollar funding can allow utilities to produce solar electricity when the sun isn’t shining.

                • volodya_ilich@lemm.ee
                  link
                  fedilink
                  English
                  arrow-up
                  3
                  ·
                  9 months ago

                  The solution is obviously not exclusively from pricing models, we need other energy sources than renewables for the time being, that doesn’t mean we need to have market-based electricity pricing.

                  Imagine the state installing as many solar panels as society, guided by experts, democratically decides it wants, basically deciding as a society the energy mix instead of hoping that companies will install enough if we bribe them enough with taxes to do so, and if it’s profitable. Then, it decides a pricing model based on a mixture of subsidy and incentivising consumption during production hours.

                  Problem solved, innit?

      • axx@slrpnk.net
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        9 months ago

        I mean, “economy” fundamentally is the allocation of limited resources, if something is limited at a point when it’s needed, then economical doesn’t sound like the wrong word to use? (I’m aware economical means cheap, BTW)

    • antimongo@lemmy.world
      cake
      link
      fedilink
      English
      arrow-up
      1
      ·
      9 months ago

      I really like your response. Right behind you about energy storage.

      Whoever cracks that nut is an instant billionaire in my opinion. The first cheap, effective, and practical storage technology is going to change the world. But we’re not there just yet.

      I’m curious on your statement about nuclear. While I do think nuclear is a great energy source, I’m not sure I agree on the on-demand part.

      Our current nuclear plants take hours or even days to start up and wouldn’t provide enough reactivity for a highly renewable grid. Are you referring to a future Small Modular Reactor technology? One with a significantly faster startup and ramp rate?

  • SL3wvmnas@discuss.tchncs.de
    link
    fedilink
    English
    arrow-up
    10
    arrow-down
    4
    ·
    9 months ago

    Every time someone mentions “oh no solar is producing too much energy” I think of this deranged Forbes article from a few years back.

    alt-text

    Microsofts billionaire founder Bill Gates is financially backing the development of sun dimming technology that would potentially…{blahblah global cooling}

  • KillingTimeItself@lemmy.dbzer0.com
    link
    fedilink
    English
    arrow-up
    8
    arrow-down
    3
    ·
    9 months ago

    of course it’s a furry shitposting about it.

    They aren’t wrong though, storage technology is only starting to come to market in significant enough capacity to be beneficial.

    And for storage plants to be financially viable energy costs during the day need to be really cheap, so they can raise them at night and make a significant enough profit to break even.

    • rockerface 🇺🇦@lemm.ee
      link
      fedilink
      English
      arrow-up
      5
      ·
      9 months ago

      Solar generation is kinda saving our asses here in Ukraine though, and was even more in the summer. So I guess all you need for solar to be viable is to have most of your other power sources to get bombed

      • KillingTimeItself@lemmy.dbzer0.com
        link
        fedilink
        English
        arrow-up
        2
        ·
        9 months ago

        this is actually something that still fascinates me. The fact that i can just buy a market accessible product, point it towards the sun, and i just get electricity is fucking insane to me.

        We truly live in the best timeline.

    • UrPartnerInCrime@sh.itjust.works
      cake
      link
      fedilink
      English
      arrow-up
      3
      ·
      9 months ago

      2 giant lakes. 1 uphill from the other, or one underground. When there’s excess energy you pump water uphill. When you need more you let it back down

      • KillingTimeItself@lemmy.dbzer0.com
        link
        fedilink
        English
        arrow-up
        1
        ·
        9 months ago

        yeah, good luck with that one though. it tends to be ecologically problematic, and very, very hard to find places good for this. It has happened, but you can’t just build these things as demand desires.

        This is why battery based and thermal based energy storage is taking quite the aggressive focus on research and development right now. Batteries are more of a side effect, and very easily accessible, and thermal storage is probably a lot less popular than it should be.

        Generally you can do a similar thing with traditional hydro anyway, plus it produces a base level of power anyway.

        • UrPartnerInCrime@sh.itjust.works
          cake
          link
          fedilink
          English
          arrow-up
          1
          ·
          9 months ago

          You’re telling me we can’t dig big holes and use them? What about using old mines and quarries?

          Is it a problem that they can’t find anything, or just that it would be a bit expensive and they would rather use batteries as an excuse to keep using oil?

          • KillingTimeItself@lemmy.dbzer0.com
            link
            fedilink
            English
            arrow-up
            1
            ·
            9 months ago

            you could, theoretically. You cold also create man made natural lakes in places where it’s convenient, but again, you need the rough shape of a lake high up, and the rough shape of a lake near enough, and lower to the other lake, that you can generate significant amounts of power.

            You might be able to use an old quarry, most old quarries are flooded anyway, but idk of many quarries that exist near the base of a mountain with the ability to have a higher elevation storage pond. Most quarries are probably going to be pretty close to ground on account of being a quarry, so that doesn’t really help much. You could also use a mine, but the problem there is going to be getting water out of it trivially. It’s just not really conducive to that use case.

            Another big problem is going to be pollution to the water supply, especially in something like a quarry or mine. That’s a non improbable issue.

            Ok so TL;DR here, is that you need an incredibly rare formation of geological features, and the ability to use them. If you’ve ever played minecraft you can think of it like finding a 3x3 formation of bedrock on the top layer of bedrock in the overworld. If not you can think of it like staring at a TV displaying static waiting for it to suddenly emerge an image that isn’t just indecipherable noise. Or better yet, the monkey on a type writer example, given enough time, it will produce the entire works of shakespeare.

            It’s theoretically possible, but practically, when possible, it’s probably already been done, and if it hasn’t there’s probably a good reason for it.

            If you’re analyzing this from a mathematical perspective, the problem here is not finding two lakes, or finding two lakes at different elevation levels, it’s finding two lakes, at different elevation levels, sufficiently close enough to be practically uesful for pumped hydro.

            The reason why we’re using batteries right now, as i’ve said is partially two fold, it’s a lot simpler, you can invest the majority of your capital into an energy storage medium, the remainder is for infrastructure, land, buildings, power equipment, which makes it a very low risk investment. The second primary reason is simply accessibility. Chemical batteries are simply the most prevalent, cheapest, and most accessible form of energy storage right now. They work anywhere, they can be built to any scale, they work no matter what time of day it is, or what time of year it is. They literally just work.

            If you’re trying to do something like pumped hydro you’re going to need a massive, multi billion, possibly hundreds of billions of dollars of capital, probably close to about a decade of construction, and only then after the construction can you start it up and start to generate power.

            With a battery storage system, once it’s built and approved for use, it can immediately start providing power storage. And for the cost of a few million, to a few hundred million. And again it scales basically infinitely.

            There are also a few other problems, Digging a big hole and filling it with water while it sounds simple is more challenging than it would seem. You need a geologically suitable area for it, and at this point you’re probably going to be flooding a dammed mountainous area anyway, so it’s probably redundant. There are earth fill embankment dams, however they have issues with subsidence for example, and that tends to be rather spooky. You would experience a similar issue here, the only difference is that it’s below ground, instead of above. What do you do with the removed material? What do you do if you’re in an area with a lot of bedrock? You’ve basically just created a quarry now.

      • Corkyskog@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        1
        ·
        9 months ago

        How efficient is making hydrogen? If you don’t need a huge facility, it might be easier to just store it that way, so you don’t need giant lakes everywhere.

        • KillingTimeItself@lemmy.dbzer0.com
          link
          fedilink
          English
          arrow-up
          1
          ·
          9 months ago

          ok so funny problem, storing hydrogen is currently the next nobel prize. And uh, generating it while theoretically easy, is very power hungry. (less of a problem here though tbf with cheap solar power)

          Also producing power from hydrogen is more complicated than you would think. You could do a hydrogen fuel cell, or possibly burn it directly, but since hydrogen tends to sort be very spicy, it’s a little hard sometimes.